
 

Data Structures 
ALGORITHMS 

YOU MAY GET STUDY MATERIAL FROM  
AMIESTUDYCIRCLE.COM 

 
INFO@AMIESTUDYCIRCLE.COM 

 
WHATSAPP/CALL: 9412903929 

https://amiestudycircle.com/
mailto:INFO@AMIESTUDYCIRCLE.COM


DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       1/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

Algorithms 

INTRODUCTION 

Data structure is the structural representation of logical relationships between elements of 
data. In other words a data structure Is a way of organizing data Items by considering its 
relationship to each other. 

Data structure mainly specifies the structured organization of data, by providing accessing 
methods with correct degree of association. Data structure affects the design of both the 
structural and functional aspects of a program. 

Algorithm + Data Structure = Program 

ALGORITHM 

Algorithm is a step-by-step finite sequence of instruction, to solve a well-defined 

computational problem. 

That is, in practice to solve any complex real life problems; first we have to define the 
problems. Second step is to design the algorithm to solve that problem. 

Writing and executing programs and then optimizing them may be effective for small 
programs. Optimization of a program is directly concerned with algorithm design. But for a 
large program, each part of the program must be well organized before writing the program. 
There are few steps of refinement involved when a problem is converted to program; this 
method is called stepwise refinement method. There are two approaches for algorithm design; 
they are top-down and bottom-up algorithm design. 

TOP-DOWN ALGORITHM DESIGN 

The principles of top-down design dictates that a program should be divided Into a main 
module and Its related modules. Each module should also be divided Into sub modules 
according to software engineering and programming style. The division of modules processes 
until the module consists only of elementary process that are Intrinsically understood and 
cannot be further subdivided. 

In C, the Idea of top-down design Is done using functions. A C program Is made of one or 
more functions, one and only one of which must be named main. The execution of the 
program always starts and ends with main, but It can call other functions to do special tasks. 

BOTTOM-UP ALGORITHM DESIGN 

Bottom-up algorithm design Is the opposite of top-down design. It refers to a style of 
programming where an application Is constructed starting with existing primitives of the 
programming language, and constructing gradually more and more complicated features, 
until the all of the application has been written. That Is, starting the design with specific 

modules and build them Into more complex structures, ending at the top. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       2/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

The bottom-up method Is widely used for testing, because each of the lowest-level functions 
Is written and tested first. This testing Is done by special test functions that call the low-level 
functions, providing them with different parameters and examining the results for 
correctness. Once lowest-level functions have been tested and verified to be correct, the next 
level of functions may be tested. Since the lowest-level functions already have been tested, 
any detected errors are probably due to the higher-level functions. This process continues, 
moving up the levels, until finally the main function Is tested. 

ANALYSIS OF ALGORITHM 

After designing an algorithm, it has to be checked and its correctness needs to be predicted; 
this is done by analyzing the algorithm. The algorithm can be analyzed by tracing all step-by-
step instructions, reading the algorithm for logical correctness, and testing it on some data 
using mathematical techniques to prove it correct. Another type of analysis is to analyze the 
simplicity of the algorithm. That is, design the algorithm in a simple way so that it becomes 
easier to be implemented. However, the simplest and most straightforward way of solving a 
problem may not be sometimes the best one. Moreover there may be more than one algorithm 
to solve a problem. The choice of a particular algorithm depends on following performance 

analysis and measurements : 

 Space complexity 

 Time complexity 

SPACE COMPLEXITY 

Analysis of space complexity of an algorithm or program is the amount of memory it needs to 
run to completion. 

Some of the reasons for studying space complexity are: 

 If the program is to run on multi user system, it may be required to specify the amount 
of memory to be allocated to the program. 

 We may be interested to know in advance that whether sufficient memory is available 
to run the program. 

 There may be several possible solutions with different space requirements. 

 Can be used to estimate the size of the largest problem that a program can solve. 

The space needed by a program consists of following components. 

 Instruction space : Space needed to store the executable version of the program and it 
is fixed. 

 Data space : Space needed to store all constants, variable values and has further two 

components : 

o Space needed by constants and simple variables. This space is fixed. 

o Space needed by fixed sized structural variables, such as arrays and structures. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       3/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

 Dynamically allocated space. This space usually varies. 

 Environment stack space: This space is needed to store the information to resume the 
suspended (partially completed) functions. Each time a function is invoked the 

following data is saved on the environment stack : 

o Return address : i.e., from where it has to resume after completion of the 

called function. 

o Values of all lead variables and the values of formal parameters in the function 
being invoked . 

The amount of space needed by recursive function is called the recursion stack space. For 
each recursive function, this space depends on the space needed by the local variables and the 
formal parameter. In addition, this space depends on the maximum depth of the recursion i.e., 
maximum number of nested recursive calls. 

TIME COMPLEXITY 

The time complexity of an algorithm or a program is the amount of time it needs to run to 
completion. The exact time will depend on the implementation of the algorithm, 
programming language, optimizing the capabilities of the compiler used, the CPU speed, 
other hardware characteristics/specifications and so on. To measure the time complexity 
accurately, we have to count all sorts of operations performed in an algorithm. If we know the 
time for each one of the primitive operations performed in a given computer, we can easily 
compute the time taken by an algorithm to complete its execution. This time will vary from 
machine to machine. By analyzing an algorithm, it is hard to come out with an exact time 
required. To find out exact time complexity, we need to know the exact instructions executed 
by the hardware and the time required for the instruction. The time complexity also depends 
on the amount of data inputted to an algorithm. But we can calculate the order of magnitude 

for the time required. 

That is, our intention is to estimate the execution time of an algorithm irrespective of the 
computer machine on which it will be used. Here, the more sophisticated method is to 
identify the key operations and count such operations performed till the program completes 
its execution. A key operation in our algorithm is an operation that takes maximum time 
among all possible operations in the algorithm. Such an abstract, theoretical approach is not 
only useful for discussing and comparing algorithms, but also it is useful to improve solutions 
to practical problems. The time complexity can now be expressed as function of number of 
key operations performed. Before we go ahead with our discussions, it is important to 

understand the rate growth analysis of an algorithm, as shown in following figure. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       4/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

 

The function that involves ‘n’ as an exponent, i.e., 2n, nn, n! are called exponential functions, 
which is too slow except for small size input function where growth is less than or equal to 
nc,(where ‘c’ is a constant) i.e.; n3, n2, n log2n, n, log2n are said to be polynomial. 

Algorithms with polynomial time can solve reasonable sized problems if the constant in the 

exponent is small. 

When we analyze an algorithm it depends on the input data, there are three cases : 

 Best case 

 Average case 

 Worst case 

In the best case, the amount of time a program might be expected to take on best possible 
input data. 

In the average case, the amount of time a program might be expected to take on typical (or 

average) input data. 

In the worst case, the amount of time a program would take on the worst possible input 
configuration. 

Time Complexity of Bubble Sort 

In the first pass of bubble sort, in worst case it must make N - l comparisons. In the next pass 
it must make N - 2 comparisons and so on. The algorithm terminates after maximum N- 1 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       5/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

pass (or earlier if there are no exchanges in a pass). Thus the total number of comparisons 

will be 

  ( 1) ( 2) ( 3) .......3 2 1N N N          

   = 
2

2( 1)
( )

2 2 2

N N N N
O N


     

TIME-SPACE TRADE OFF 

There may be more than one approach (or algorithm) to solve a problem. The best algorithm 
(or program) to solve a given problem is one that requires less space in memory and takes 
less time to complete its execution. But in practice, it is not always possible to achieve both 
of these objectives. One algorithm may require more space but less time to complete its 
execution while the other algorithm requires less time space but takes more time to complete 
its execution. Thus, we may have to sacrifice one at the cost of the other. If the space is our 
constraint, then we have to choose a program that requires less space at the cost of more 
execution time. On the other hand, if time is our constraint such as in real time system, we 
have to choose a program that takes less time to complete its execution at the cost of more 
space. 

ASYMPTOTIC NOTATION 

Asymptotic notation is the most simple and easiest way of describing the running time of an 
algorithm. It represents the efficiency and performance of an algorithm in a systematic and 
meaningful manner. Asymptotic notations describe time complexity in terms of three 
common measures, best case (or 'fastest possible'), worst case (or 'slowest possible'), and 
average case (or 'average time'). The three most important asymptotic notations are: 

 Big-Oh notation 

 Omega notation 

 Theta notation 

Big “O” Notation 

Big O is a characteristic scheme that measures properties of algorithm complexity 
performance and/or memory requirements. The algorithm complexity can be determined by 
eliminating constant factors in the analysis of the algorithm. Clearly, the complexity function 
f(n) of an algorithm increases as ‘n’ increases. 

Let us find out the algorithm complexity by analyzing the sequential searching algorithm. In 
the sequential search algorithm we simply try to match the target value against each value in 
the memory. This process will continue until we find a match or finish scanning the whole 
elements in the array. If the array contains ‘n’ elements, the maximum possible number of 
comparisons with the target value will be ‘n’ i.e., the worst case. That is the target value will 
be found at the nth position of the array. 

f(n) = n 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       6/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

i.e., the worst case is when an algorithm requires a maximum number of iterations or steps to 

search and find out the target value in the array. 

The best case is when the number of steps is less as possible. If the target value is found in a 
sequential search array of the first position (i.e., we need to compare the target value with 
only one element from the array) - we have found the element by executing only one iteration 

(or by least possible statements) 

f(n) = 1 

Average case falls between these two extremes (i.e., best and worst). If the target value is 
found at the n/2nd position, on an average we need to compare the target value with only half 

of the elements in the array, so 

f(n) = n/2 

The complexity function f(n) of an algorithm increases as ‘n’ increases. The function f(n)= 
O(n) can be read as “f of n is big O of n” or as “f(n) is of the order of n”. The total running 
time (or time complexity) includes the initializations and several other iterative statements 

through the loop. 

Then,   f (n) = O(nk) 

Based on the time complexity representation of the big Oh notation, the algorithm can be 
categorized as : 

1. Constant time O(1) 

2. Logarithmic time Olog(n) 

3. Linear time O(n) 

4. Polynomial time O(nc), if c > 1 

5. Exponential time O(cn), if c > 1 

Limitation Of Big “O” Notation 

Big O Notation has following two basic limitations : 

 It contains no effort to improve the programming methodology. Big O Notation does 
not discuss the way and means to improve the efficiency of the program, but it helps 
to analyze and calculate the efficiency (by finding time complexity) of the program. 

 It does not exhibit the potential of the constants. For example, one algorithm is taking 
1000n2 time to execute and the other n3 time. The first algorithm is O(n2), which 
implies that it will take less time than the other algorithm which is O(n3). However in 
actual execution the second algorithm will be faster for n < 1000. 

We will analyze and design the problems in data structure. As we have discussed to develop a 

program of an algorithm, we should select an appropriate data structure for that algorithm. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       7/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

Little O Notation 

The little O is denoted as o. It is defined as : Let, f(n) and g(n) be the non negative functions 
then 

  lim ( )
0

( )

f n
n

g n
    

such that f(n) = o(g(n)) 

Theta notation 

  ( ) ( ( ))f n g n   

read as f of n equal lo theta of g(n) if and only if, there exists positive constants Q.C1 and C2 
such that for all n > n0 

  1 2| ( ) | ( ) | ( ) |C g n f n C g n    

If f(n) = (g(n)) and g(n) both an upper and lower bound on f(n). i.e. worst and best cases 

require the same amount of time to within constant factor. 

Example 

Show that log( ) (log( !))n n n   

Solution 

 notation is used for tight bound 

We know ! nn n   

i.e.  log( !) log( ) lognn n n n    

  log(n!)=log(1) + log (2) + ...... log(n – 1) + log(n) 

We can get upper bound by 

  log(1) + log (2) + ..... log(n)  log(n) + log(n) + ..... log(n)  nlog(n) 

We can get lower bound by throwing away first half of the sum 

  log(1) + log(2) + ....... log(n/2) + .....log(n)  log(n/2) 

  +.....log(n)  log(n/2) + ....... + log(n/2) = (n/2)*log(n/2) 

For the same values of n there is a tight lower bound and also for same values of n there is 

tight upper bound. hence log (log( !))n n n   

EFFICIENCY OF ALGORITHM 

If we have two algorithms that perform same task, and the first one has a computing time of 
O(n) and the second of O(n2), then we will usually prefer the first one. 

The reason for this is that as n increases the time required for the execution of second 
algorithm will get far more than the time required for the execution of first. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       8/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

We will study various values for computing function for the constant values. The graph given 
below will indicate the rate of growth of common computing time functions. 

 

 

Notice how the times O(n) and O(n log2n) grow much more slowly than the others. For large 
data sets algorithms with a complexity greater than O(n log2n) are often impractical. The very 
slow algorithm will be the one having time complexity 2n. 

Example 

f(n) = 3n3 + 2n2 + 4n + 3 

= 3n3 + 2n2 + O(n), as 4n + 3 is of O(n) 

= 3n3+ O(n2), as 2n2 + O(n) is O (n2) 

= O (n3) 

Example 

Which time complexity shows poor performance? Why? 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       9/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

Solution 

See table. 

 

Thus as the value of n increases the value of 2n becomes the largest among all the time 
complexity values. The program, which gives the time complexity value large, is supposed to 
be the slow one that is why it is said that the program having the time complexity 2n is poor 
in performance. 

Example 

Find the frequency count for the following piece of code. 

sum = 0; 

 for (i = 1; i<=n; i++) 

 sum = sum + a[i] 

Solution 

Let us write stepwise 

Step1: sum = 0; 

 Step 2: for (i = 1; i<=n; i++) 

 Step 3: sum = sum + a[i] 

Total frequency count = l + l + (n + l) + n + n = 3n + 3. The time complexity will be O(n). 

 

 

 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       10/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

Example (AMIE S11, 4 marks) 

Suppose T1(n) and T2 (n) are the time complexities of two program fragments P1 and P2, 
where T1(n) = O(f(n)) and T2 = O(g(n)). What is the time complexity of program fragment P1 
followed by P2? 

Solution 

The time complexity of the program fragment P1 followed by P2 is given by T1(n) + T2(n). 

T1(n)  C.f(n) for some positive integer C and positive and positive integer n1, such that n  

n1. 

T2(n)  D.g(n) for some positive integer d and positive and positive integer n2, such that n  

n2. 

Let n0 = max (n1, n2). Then T1(n) + T2(n)  C.f(n) + D.g(n) for n >n0 i.e. T1(n) + T2(n)  (C + 

D) max(f(n), g(n)) for n>n0. 

Hence T1(n) + T2(n) = 0 (max(f(n), g(n)) 

Example (AMIE W10 6 marks) 

Suppose 1( ) ( ( ))f n O t n   and 2 ( ) ( ( ))f n O t n . Which one of the following is true? In case an 

option is false, give reasons that why is it false. 

(i) 1 2( ) ( ) ( ( ))f n f n O t n    

(ii) 1 2( ) ( ) ( ( ))f n f n O t n    

(iii) 1 2( ) / ( ) (1)f n f n O   

(iv) 1 2( ) ( ( ))f n O f n   

Solution 

(i)  If f1(n)=Og1(n) and f2(n) = Og2(n) then f1(n) + f2(n)= O(max (g1(n), g2(n)). here since 
both f1and f2 are O (t(n)), max (t(n), t(n)) = t(n). Thus 

  1 2( ) ( ) ( ( ))f n f n O t n    True 

(ii) Similarly 

  1 2( ) ( ) ( )f n f n Ot n    True 

(iii) Here 1 2( ) / ( ) .f n f n const  since both are O(t(n)) 

 Hence 1 2( ) / ( ) (1)f n f n O   True 

(iv) Since 1( ) ( ( ))f n O t n   and 2 ( ) ( ( ))f n O t n   

  2( ) ( ( ))nf n O cf n   where c is a constant. True 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       11/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

Example (AMIE W10, S11, 4 marks) 

Suppose P(n) = a0 +a1n + a2n
m, that is, suppose degree P(n) = m. Prove that P(n) = O(nm). 

Solution 

Let  0 0 1 1| | | | ...... | |m mb a b a b a     

Then for n1 

  2
0 1 2( ) ....... m

mP n b b n b n b n     

   = 0 1
0 11

....... ( ...... )m m m
m mm m

b b
b n b b b n Mn

n n 

      
 

  

where  0 1 2| | | | | | ....... | |mM a a a a     

Hence  ( ) ( )mP n O n   

SPACE COMPLEXITY 

Another useful measure of an algorithm is the amount of storage space it needs. The space 
complexity of an algorithm can be computed by considering the data and their sizes. Again 
we are concerned with those data items which demand for maximum storage space. A similar 
notation 'O' is used to denote the space complexity of an algorithm. When computing for 
storage requirement we assume each data element needs one unit of storage space. While as 
the aggregate data items such as arrays will need n units of storage space n is the number of 
elements in an array. This assumption again is independent of the machines on which the 

algorithms are to be executed. 

The space complexity of a computer program is the amount of memory required for its proper 
execution. The important concept behind space required is that unlike time, space can be 
reused during the execution of the program. As discussed, there is often a trade-off between 
the time and space required to run a program. 

In formal definition, the space complexity is defined as follows: 

Space complexity of a Turing Machine: The (worst case) maximum length of the tape 
required to process an input string of length n. 

Example 

Consider the following example: Binary Recursion (A binary-recursive routine (potentially) 

calls itself twice). 

1. If n equals 0 or 1, then return 1  

2. Recursively calculate f (n−1)  

3. Recursively calculate f (n−2)  

4. Return the sum of the results from steps 2 and 3. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       12/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

Time Complexity: O(exp n) 

Space Complexity: O(exp n) 

SPARSE ARRAY 

If we are reading or writing two-dimensional array, two loops are required. Similarly the 
array of ‘n’ dimensions would require ‘n’ loops. The structure of the two dimensional array is 
illustrated in the following figure : 

int A[10][10]; 

 

Two Dimensional Array 

Sparse array is an important application of arrays. A sparse array is an array where nearly all 
of the elements have the same value (usually zero) and this value is a constant. One-
dimensional sparse array is called sparse vectors and two-dimensional sparse arrays are called 
sparse matrix. 

The main objective of using arrays is to minimize the memory space requirement and to 
improve the execution speed of a program. This can be achieved by allocating memory space 
for only non-zero elements. 

For example a sparse array can be viewed as 

 

We will store only non-zero elements in the above sparse matrix because storing all the 
elements of the sparse array will be consisting of memory sparse. The non-zero elements are 

stored in an array of the form. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       13/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

A[0......n][1......3] 

Where ‘n’ is the number of non-zero elements in the array. In the above Fig. of two 

dimensional array ‘n = 7’. 

The space array given in two dimensional array above may be represented in the array 

A[0......7][1.....3]. 

 

The element A[0][1] and A[0][2] contain the number of rows and columns of the sparse 
array. A[0][3] contains the total number of nonzero elements in the sparse array. 

A[1][1] contains the number of the row where the first nonzero element is present in the 
sparse array. A[1][2] contains the number of the column of the corresponding nonzero 
element. A[1][3] contains the value of the nonzero element. In the Fig. of two dimensional 

array, the first nonzero element can be found at 1st row in 3rd column. 

FILES AND RECORDS 

A file is typically a large list that is stored in the external memory (e.g.. a magnetic disk) of a 

computer. 

A record is a collection of information (or data items) about a particular entity. More 
specifically, a record is a collection of related data items, each of which is called a filed or 

attribute and a file is a collection of similar records. 

Although a record is a collection of data items, it differs from a linear array in the following 
ways: 

 A record may be a collection of non-homogeneous data: i.e.. the data items in a record 
may have different data types. 

 The data items in a record are indexed by attribute names, so there may not be a 
natural ordering of its elements. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       14/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

STRINGS 

In computer terminology the term ‘string’ refers to a sequence of characters. A finite set of 
sequence (alphabets, digits or special characters) of zero or more characters is called a string. 
The number of characters in a string is called the length of the string. If the length of the 
string is zero then it is called the empty string or null string. 

Strings are stored or represented in memory by using following three types of structures: 

 Fixed length structures 

 Variable length structures with fixed maximum 

 Linear structures 

Fixed Length Representation 

In fixed length storage each line is viewed as a record, where all records have the same 

length. That is each record accommodates maximum of same number of characters. 

The main advantage of representing the string in the above way is : 

 To access data from any given record easily. 

 It is easy to update the data in any given record. 

The main disadvantages are : 

 Entire record will be read even if most of the storage consists of inessential blank 

space. Time is wasted in reading these blank spaces. 

 The length of certain records will be more than the fixed length. That is certain 
records may require more memory space than available. 

Fig. (b) is a representation of input data which is in Fig. (a) in a fixed length (records) storage 

media in a computer. 

 

(a) Input Data 

 

(b) Fixed Length Representation 

Variable Length Representation 

In variable length representation, strings are stored in a fixed length storage medium. This is 
done in two ways. 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       15/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

1. One can use a marker, (any special characters) such as two-dollar sign ($$), to signal 

the end of the string. 

2. Listing the length of the string at the first place is another way of representing strings 
in this method. 

 

Linked List Representations 

In linked list representations each characters in a string are sequentially arranged in memory 
cells, called nodes, where each node contain an item and link, which points to the next node 

in the list (i.e., link contain the address of the next node). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DATA STRUCTURES 
ALGORITHMS 

SECOND FLOOR, SULTAN TOWER, ROORKEE – 247667 UTTARAKHAND     PH: (01332) 266328     Web: www.amiestudycircle.com       16/16 

AMIE(I) STUDY CIRCLE(REGD.) 
A  Focused  Approach  

ASSIGNMENT 
Q.1. (AMIE S12, 5 marks): Define Big O notation and what is its utility in analysis of algorithms? 

Q.2. (AMIE S13, 4 marks): What is asymptotic little O notation (o)? What is big O notation? 

Q.3. (AMIE S07, 12 marks): What do you mean by efficiency of an algorithm? How can you compare the 
efficiency of two algorithms? Explain the concept of best case, average case and worst case time complexity. 

Q.4. (AMIE S12, 6 marks): What is worst case and average case analysis? 

Q.5. (AMIE W07, 10 marks): Define (i) Time complexity (ii) space complexity (iii) array representation of 
strings (iv) record (v) abstract data type 

Q.6. (AMIE S12, 5 marks): Describe briefly three types of structures used for storing strings. 

Q.7. (AMIE S13, 6 marks): What is time complexity of an algorithm? Calculate run time complexity of bubble 
sort. 

Q.8. (AMIE S11, 5 marks): Order the following function by growth rate: N, N, N1.5, N2, NlogN, NloglogN, 

Nlog(N2), 2/N, 2N, 37 

 

 

 

(For online support such as eBooks, video lectures, audio lectures, unsolved papers, quiz, test series and course updates, 

visit www.amiestudycircle.com) 

 

 

 

 


